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Upon flow around a blunt body by a hypersonic flow with a solid impurity the surface of 
the body is destroyed due to the impact action of the particles. In the course of the 
destruction the erosion products are carried off into the flow and accumulate in the lateral 
part of the body directly above the erosion surface. The dust layer formed in this way is 
effective protection of the surface from further action of the high-velocity particles [1]. 
A simple computational model of erosional destruction which takes account of the shielding 
effect has been proposed in [2], in which it was established in particular that in the case 
of a steady flow a dust layer exists only in a restricted range of variation of the mass 
concentration of the impurity in the advancing flow. In this connection a model was in- 
vestigated which includes a description of nonsteady processes in the dust layer. It turned 
out that the shielding parameter ~ increases without limit when the mass concentration of the 
particles exceeds a critical value. The dust layer is strongly compacted and just adheres 
to the surface of the body, which is interpreted as the initial stage of formation of the 
coating. It has proven possible within the framework of this model to explain in a simple 
way the results of the experiments of [3], which are paradoxical at first glance, in which a 
decrease of the erosion coefficient by 2-3 orders of magnitude was recorded upon multiple 
collision in comparison with the impact of a single particle. 

Erosional processes are investigated in the vicinity of the critical point of an axi- 
symmetric blunt body around which is flowing a dusty hypersonic flow. Along with the usual 
impact layer of thickness s there exists a thin layer of erosion products which is directly 
adjacent to the surface of the body, whose thickness A << s. The equations of mass and 
momentum transport of a polydisperse mixture are averaged over the thickness of the dust layer 
in a coordinate system with its y axis along the generatrix of the body. In the single- 
velocity approximation we have the system of equations (here and later the notation is 

adopted from [2]): 

a-T -7 W (y vA) = 4 + po ( ) , (1) 

where ~ = pc(l -- ~) + Pe and a is the volume content of the erosion products. 

In the time-independent case the equations of the model are closed by expressions for 
the layer thickness A, the flow of the erosion products Je, the components of the gas flow 
velocity on the outer boundary of the layer u(A) and v(A), and the expression for the pressure 
gradient on the surface of the body. The corresponding expressions obtained from the solu- 

tion of the "external" problem are of the form [2] 

A = A0e-r 4 g pp| + E0e 2| 
2A (2) 

u (A) = - -  "F p~ ( l  - -  ~ )  v ,  v (A)  = k~y, o~~ = - -  p~koy. 

Since the equations of the model contain oniy three characteristics of the impact layer (the 
gas density behind the straight section of the shock wave Pc and the velocity gradient in 
the vicinity of the critical point k c enter explicitly, whereas the effect of the departure 
distances is exhibited in terms of the parameters Ao and Eo), the conclusions obtained within 
the framework of this model prove to be applicable to the analysis of the erosion of bodies 
having a blunt shape from a spherical nose to a flat end. 
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The boundary conditions for the system (i) are specified on tbe symmetry axis in the 
form 

y = 0: 0 ~ / @  -~ 0,  u = 0 .  ( 3 )  

The s o l u t i o n  o f  t h e  p r o b l e m  ( 1 ) - ( 3 )  i n  t h e  t i m e - i n d e p e n d e n t  c a s e  i s  o f  t h e  f o r m  

Pe ----,Pc aqDe~, v = ~lkcY,  (4)  
w h e r e  

i § V i  + 3 ( i  - ~ + .r 
1] = 3 (i --  a -4- aCDer ' ~lcD = p (1 + Eoe - ' r  

(for a = 0 this solution coincides with that previously obtained in [2]). The parameters 

and p are expressed in terms of the relaxation length of the particles l'---- 8 P~ p 3C--~ p--~ rp, 

' and  i n  w h i c h  i s  d e t e r m i n e d  f r o m  t h e  d r a g  c o e f f i c i e n t  i n  t h e  f l o w  o f  t h e  e r o s i o n  p r o d u c t s  C D 
t e r m s  o f  o t h e r  d i m e n s i o n a l  p a r a m e t e r s :  

p ~  up____~ ' /5 a = I v o, P = 

Pc 2kcl'  p " 

Thus we obtain a functional relation @ = @(p, a, Eo); the erosion coefficient is equal to 

E = Eo exp(--2@), by which the shielding effect is explained. Without restricting generality, 
we further assume Eo << 1 and a >> i. The volume content of particles does not exceed unity, 
a < i; therefore with @ ~ 1 we have 

' p = ( ~ e - r  + O ( a - a / 2 ) .  

With @ = 1 p reaches the maximum value (p* = (3ae) -z/2) and then declines as ~ increases. 
It follows from this that the function @(p) branches in the vicinity of the point p = p* and 
that one should expect critical phenomena here. 

We shall consider those perturbations of the parameters of the dust layer for which 
the structure of the solution (4) is not disrupted. Perturbations with @ = @(t), q = h(t) 

correspond to this. In addition we shall assume the characteristic Strouhal number Sh = 

A/u to be so small that closing of the model in the form (2) preserves its meaning. Thus we 
shall assume Pc = const and kc = const. Discarding the terms in the equations of the system 
(i) which are small when @ ~ i, which correspond to the transport of mass and momentum of the 
gaseous phase through the boundary of the dust layer, Pe >> Pc, we have 

I dO l d e - ~  
" k c d t  + 2@~ = 2p, ~ 'E/-(~q) + 3~q~ = a (5)  

The stationary points of the dynamical system (5) which satisfy the conditions @o > 0, no > 0 
are found from the solution of the system of algebraic equations 

, l o :=  p = (r 

We shall investigate the stability of the dynamical system (5) in the vicinity of the 
stationary points. The roots of the characteristic equation of the corresponding linearized 
system are 

' r  l___ 1 + -  5-  . 

Thus the states with @o < 1 are stable, and the corresponding stationary point (Go, qo) is a 
node. When @o > i, the states are unstable, and the corresponding point (@o, ho) is a 
saddle. We shall consider in what way the system departs from the equilibrium position when 
@o = I. It is convenient to switch from the system (5) to a single equation for the function 
~(t)- 

r 3 - -  - o ,  ( 6 )  -~- (@' - -  2 p )  ~ + 2 O e  r = O '  ---- i d(I) 
a k c dt  
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(it is immediately evident from this equation that the stabilizing effect of a pressure 
gradient is exhibited only when ~ < i). We shall set p = p* + e, c << p*, and we shall ex- 
pand the function r into a series in powers of s: 

We shall seek the solution of Eq. (6) in the form (7) with the initial data 

(7) 

Substituting the series (7) 
the chain of equations: 

into Eqs. 

�9 (0) = i ,  ~'(0) = 2e. (8) 

(6) and e q u a t i n g  t e rms  o f  l i k e  powers  o f  s ,  we o b t a i n  

t t  $ t 
~1 + 6p @, 12p* = 0, 

I t  , 2 , , l  

r + 6 p * r  - 6 = 3 - + ( r  - 

The s o l u t i o n  o f  t h e  p~oblem ( 6 ) - ( 8 )  i s  o f  t h e  form 

,3 [ t 8  ( p * k o t ) , - 6 p * k o t  + 1 -  o -~ @ (t) = ~ + 2 s k J  +'3--6-7p* 

t o  w i t h i n  an a c c u r a c y  o f  t e rms  ~~3. Thus i n  the  r e g i o n  o f  s m a l l  s u b c r i t i c a l i t y  t he  s h i e l d i n g  
p a r a m e t e r  i n c r e a s e s  w i t h  t i m e ,  and the  s y s t e m  l e a v e s  the  e q u i l i b r i u m  p o s i t i o n .  When ~ >> 1, 
one can d i s c a r d  i n  Eq. (6) the  term c o r r e s p o n d i n g  to  a p r e s s u r e  g r a d i e n t .  A f t e r  t h i s  i t  i s  
r e d u c e d  to  a f i r s t - o r d e r  e q u a t i o n  which  i s  n o t  s o l v e d  f o r  t he  d e r i v a t i v e :  

4p/3 ,I, O = C (2p - -  O,)2/8 exp k2--~-~-~-- o '  ] C = const. 

The s o l u t i o n  o f  t h i s  e q u a t i o n  has the  f o l l o w i n g  parametric representation: 

2C (2p -- ~)-t/~ exp \ 2p -- L J t = t o + ~  
~o 

�9 = C ( 2 p  - -  ~)2'3 exp \2-~2~- ~7 ~ < 2 p .  

It follows from this that the shielding parameter increases monotonically with time; ~ + 2pkct 
when t § ~. Due to this the thickness of the dust layer decreases, and the density of the 
discrete phase in the layer increases with time. Evidently, this process cannot last in- 
definitely long and concludes when Pe reaches some limiting value~ after which a coating of 
densely compacted particles can form in the lateral part of the body. Coatings which form 
upon collapse of the dust layer were actually recorded in experiments, a detailed description 
of which can be found in [4]. However, the question of the role of the criterion p* in the 

coating formation processes remains open. 

A possible dependence of the velocity recovery coefficient upon impact % on the collision 
parameters was not taken into account in the analysis performed above. According to [2], 
A = T%Up. If ~ = ~oU~T in some range of collision velocities, the shielding parameter above 

which stability loss of the dust layer occurs is ~m = (i -- T)-x. Thus collapse will not be 

observed in the transition region from inelastic to elastic impact, in which y ~ i. 

Special calculations were made to estimate the effect of the erosion parameter Eo on the 
critical values of particle discharge, which showed that this effect is inappreciable. Thus 
the critical discharge p* decreases by approximately 27% for a = 20 upon a variation of Eo by 

two orders of magnitude. 

The erosion coefficient E decreases strongly with an increase in the shielding parameter; 
therefore one should expect in experiments on erosion in hypersonic flows with a dustiness 
above the critical level an appreciable decrease in the destruction observed in comparison 
with the theoretical estimates based on data for a single collision. The dust layer which is 
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formed on the lateral part of the body can shield the surface not only partially but complete- 
ly from the action of high-velocity particles. The resulting amount of erosion damage of the 
surface is determined by the initial period of formation of the dust layer with a characteris- 
tic time for the process of Ater ~ i/2pk c. 
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CALCULATION OF THE VIRTUAL MASS OF SPHERICAL 

PARTICLES IN A DISPERSED MEDIUM 

A. E. Kroshilin and V. E. Kroshilin UDC 532.529 

One of the central problems in the mechanics of multiphase dispersed media is the problem 
of determining the interphase interaction. This problem is most simply solved by using 
relations which are valid for a single inclusion, moving in an unbounded carrying medium. 
This approach, however, does not take into account the effect of the inclusions on one an- 
other through the carrying medium, which can lead to considerable errors in the determination 
of the interphase interaction [1, 2]. 

The effect of inclusions on one another is easy to take into account within the framework 
of the cellular approach, which is analyzed in [i]. The method of cells is applicable to the 
study of media with a regular structure. Dispersed media, as shown in [1], have different 
microstructures under different conditions: a regular structure, when the distance between 
neighboring inclusions is the same; a chaotic structure, when the inclusions are distributed 
randomly, and others. 

In the general case, the average interphase interaction force is found by averaging the 
interphase interaction force over all positions of the inclusions. However, the distribution 
function of the positions of the inclusions depends on the interphase interaction force. 
Thus, to determine the average interphase interaction, it is necessary to solve a very 
complicated problem. 

Except for the rare exception [3], in solving this problem it is assumed that a dispersed 
medium has either a regular or chaotic structure. However, even after this assumption is 
made, it is difficult to determine the average interphase interaction, since it is difficult 
to determine the interphase interaction for a specific distribution of inclusions. For this 
reason, many authors use different simplifying assumptions in calculating the average inter- 
phase interaction [4-6]; in addition, within the framework of their approach, it is impossible 
to estimate the error introduced by these assumptions. The results obtained using the exact 
solution of the problem of interaction of several inclusions in the carrier medium are more 
reliable [7, 8]. 

In this paper, we examine the problem of the motion of spherical inclusions in an ideal 
carrier medium. We describe the technique for calculating the average characteristics of 
the interaction of inclusions with the carrier medium. This technique is used to calculate 
the virtual mass of spherical inclusions in the dispersed medium. 
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